Valorizzazione dell'analisi degli acidi grassi attraverso il MIR: esempi di alcuni casi pratici

Andrea Revello Chion

Daniele Giaccone

Giorgio Borreani, Mauro Coppa, Ernesto Tabacco

Lattiero caseari e acidi grassi

- > Cambiamento dell'alimentazione umana negli ultimi 100 anni:
 - >Aumento ingestione grassi, in particolare grassi saturi
 - ➤ Aumento ingestione n-6 e riduzione n-3 (Caramia & Ruffini, 2015)
- >Aumento malattie legate all'alimentazione
 - Esempio malattie cardiovascolari (Parodi, 2004)
- ➤ Europa occidentale: 92.9 kg/procapite 30% consumo di grassi animali (FAO, 2013)
- >Attenzione sulla qualità del grasso
 - **➤** Composizione del profilo degli acidi grassi

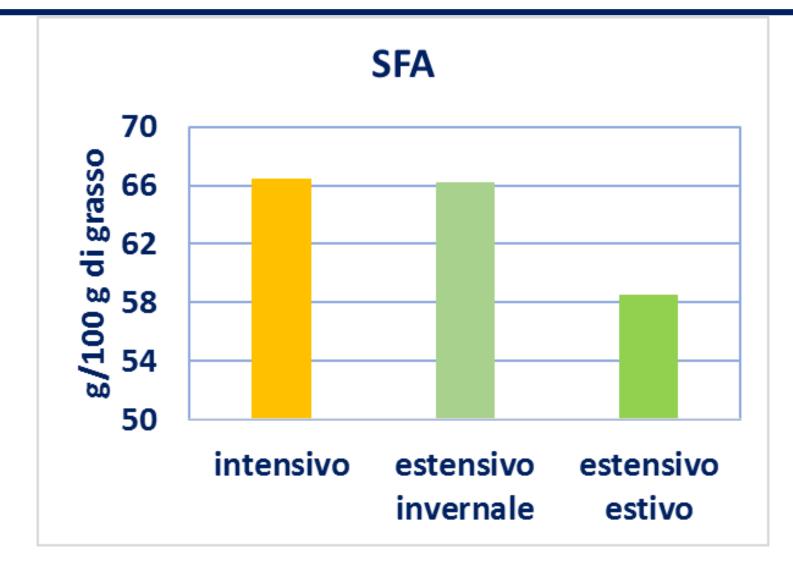
Importanza del profilo degli acidi grassi del latte

- >Salute umana
 - Elevato contenuto di acidi grassi saturi (SFA) e di acidi grassi trans
 - Effetti negativi: obesità, diabete, malattie cardiovascolari (Kratz et al., 2013)
 - ➢Acidi grassi insaturi, quali acidi grassi essenziali (linoleico e linolenico) e CLA:
 - Effetti positivi sulla salute umana (Stark et al., 2008; Dilzer & Park, 2012)

Importanza del profilo degli acidi grassi del latte

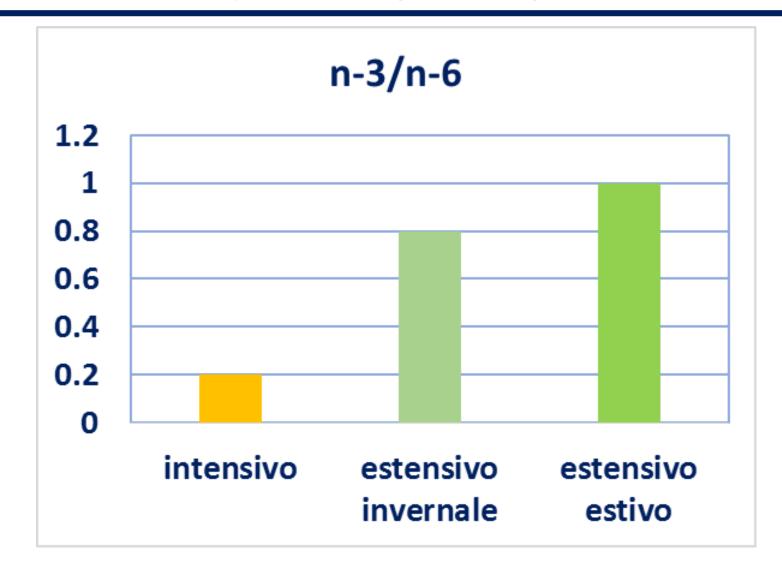
- >Salute animale
 - ➤ Profilo acidico del latte correlato con la chetosi sub-clinica (Van Haelst et al., 2008; Gross et al., 2011)
 - Contenuto di acidi grassi ramificati e a catena dispari correlato con tipo di dieta (Vlaemink et al., 2016)
- **➤ Qualità dei prodotti lattiero-caseari**
 - ➤ Influenza le caratteristiche organolettiche e le proprietà tecnologiche (Coppa et al., 2011; Martin et al., 2005; Giaccone et al., 2016)
- **≻**Emissioni di gas serra
 - Correlazione positiva tra contenuto di acidi grassi saturi del latte ed emissioni di metano (Chilliard et al., 2009)

Fattori che influenzano gli acidi grassi nel latte



- ➤ Genetica (De Marchi et al., 2014)
- >Stadio di lattazione e salute animale (Griinari et al., 1998)
- Composizione della dieta (Dewhurst et al., 2007; Elgersma et al., 2006)
 - Rapporto foraggi concentrati (Slots et al., 2009)
 - Foraggi verdi (Revello Chion et al., 2010; Coppa et al., 2015)
 - ➤ Utilizzo di semi oleaginosi, oli e grassi (Chilliard et al., 2001)

Sistemi di allevamento e profilo degli acidi grassi

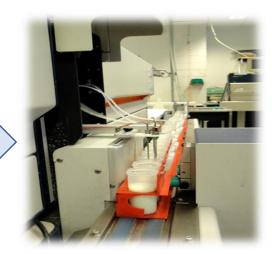


Fonte: Borreani et al., 2016

Sistemi di allevamento e profilo degli acidi grassi

Fonte: Borreani et al., 2016

Ruolo del laboratorio?


Valorizzazione del dato attraverso l'analisi

➤ Necessità di un metodo veloce e poco costoso, ma allo stesso tempo preciso ed accurato

curva di calibrazione per MIR

Analisi del profilo acidico con GC:

- Tempi lunghi, costi elevati e richiesta di elevato profilo professionale
- Analisi precisa, accurata e dettagliata

Predizione del profilo acidico con:

- Analisi precisa, accurata e veloce
- Analisi in routine
- Costi contenuti

Evoluzione delle analisi al MIR

- ▶ Primi studi effettuati circa 10 anni fa (Soyeurt et al., 2006; Soyeurt et al., 2008; Ferrand et al., 2011)
- Elevate performance per i principali gruppi con espressione in g/100 g di latte (De Marchi et al., 2011; Soyeurt et al., 2011)

- >g/100 g di latte: poca informazione sulla "bontà" del profilo in acidi grassi
 - **≻** Valori molto influenzati dal tenore in grasso
 - ➤ Non consente di confrontare e discriminare il latte in base al profilo in acidi grassi

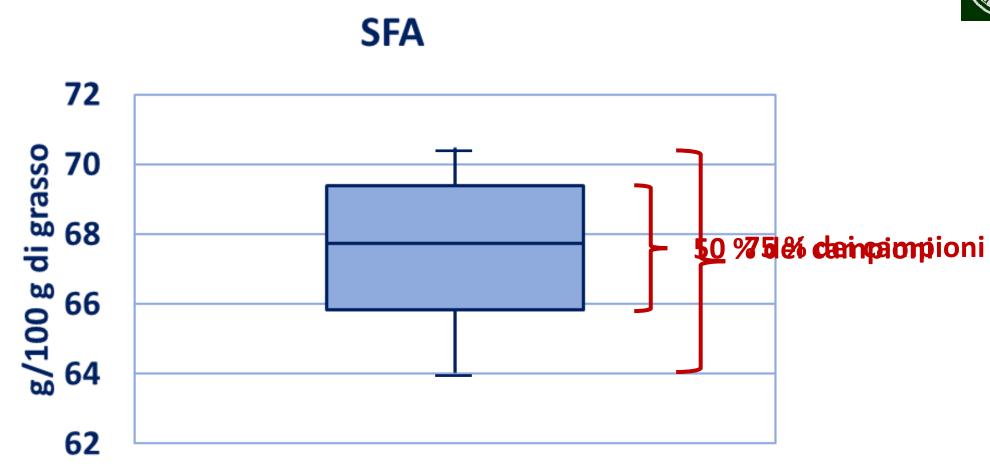
Unità di misura: g/kg di latte o g/100g di acidi grassi?

	Latte 1	Latte 2
SFA (g/100 g di latte)	2.30	2.30
Grasso (g/100 g)	4.00	3.50
SFA (g/100 g di grasso)	57.50	65.71

ARA Piemonte

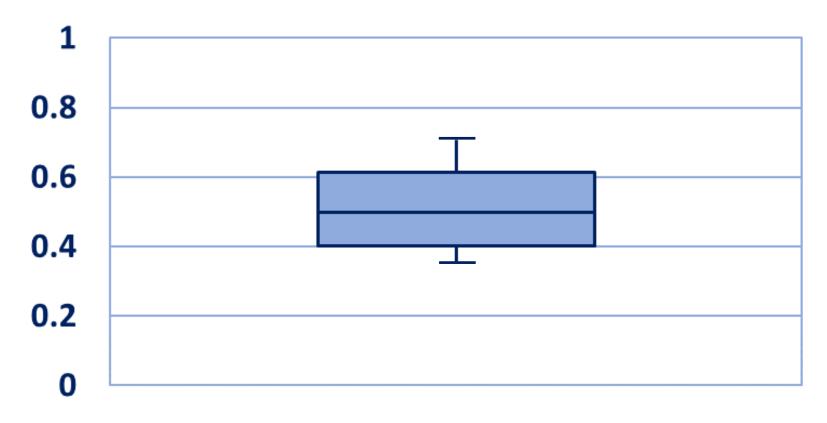
- > 950 campioni di latte di massa prelevati dal 2011 ad oggi
- ➤ Da diverse aziende in diverse stagioni: per avere la massima variazione del profilo in acidi grassi
- Fattore principale di scelta: tipo di razione alimentare
- ➤ Allevamenti intensivi che allevano razza Frisona (produttori di circa l'80% del latte della Pianura Padana)
- ➤ Inclusione di aziende estensive e di aree montane per avere profili acidici maggiormente differenti

Performance delle analisi al MIR

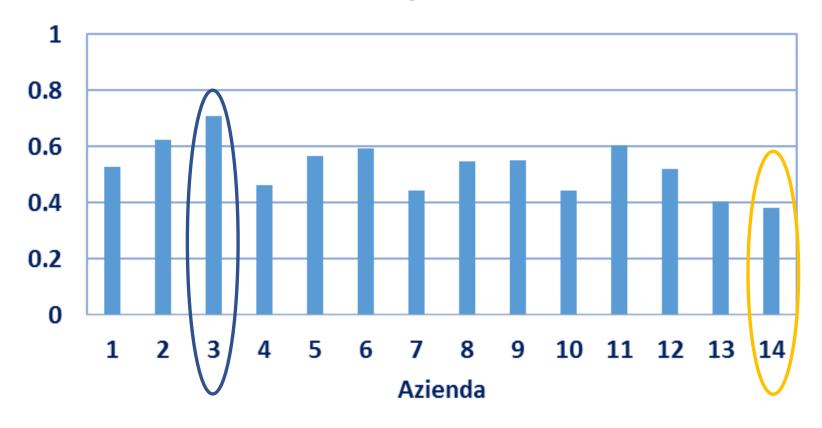

Bontà predizione	povera	approssimativa	promettente	applicabile
R ² CV & R ² V	≤ 0,66	0,67-0,81	0,81-0,90	≥ 0,91
	OCFA	OBCFA	BCFA	SFA
	n-6 FA		PUFA	MUFA
			Total C18:1cis	UFA
Acidi grassi			n-3 FA	Total C18:1trans
			n-3/n-6	Total trans-FA
				C18:1cis9/C16:0
				Total CLA
				C18:1trans11/C18:1trans10

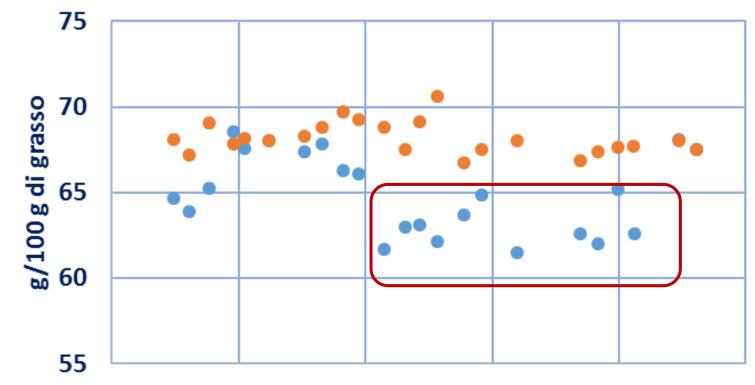
Fonte: Coppa et al., 2013

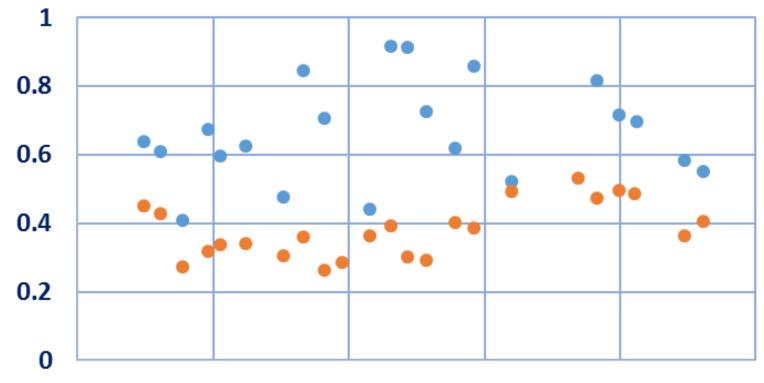
Latte di massa piemontese



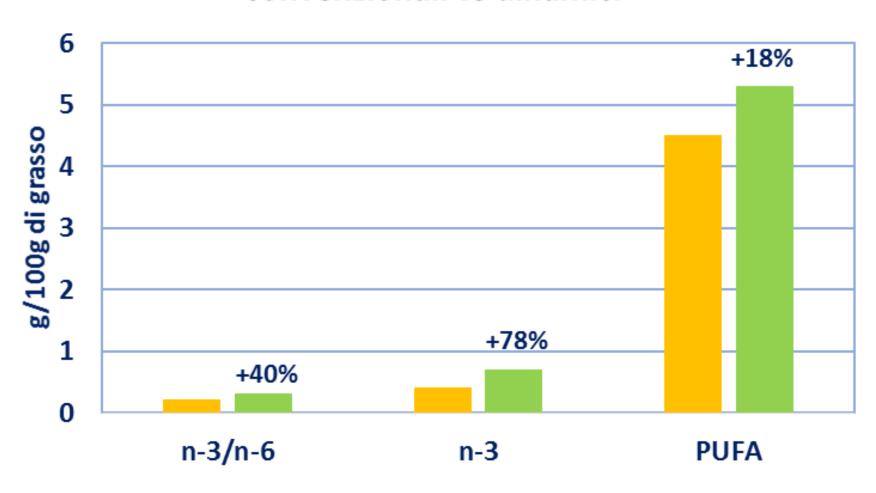
Latte di massa piemontese







23-set-15 1-gen-16 10-apr-16 19-lug-16 27-ott-16 4-feb-17


23-set-15 1-gen-16 10-apr-16 19-lug-16 27-ott-16 4-feb-17

Sistemi foraggeri e acidi grassi

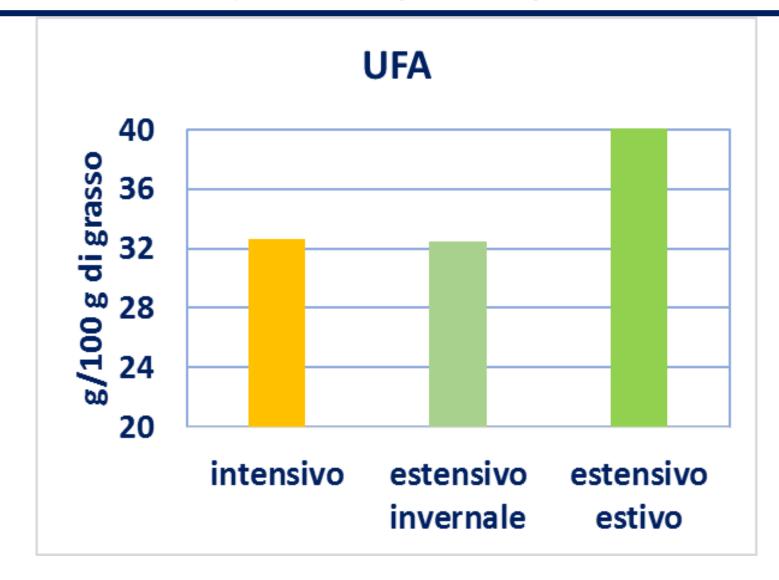
convenzionali vs dinamici

Fonte: Borreani et al., 2016

Utilizzo degli acidi grassi in stalla

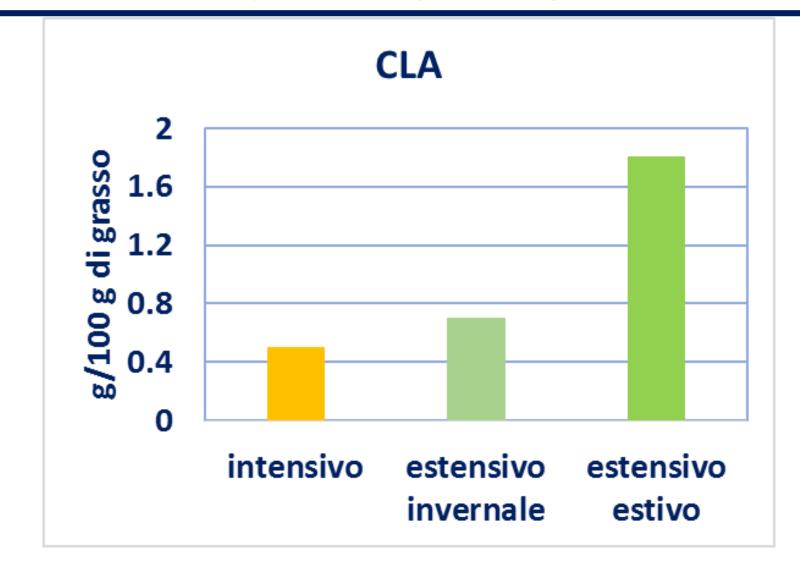
	Dieta equilibrata	Dieta acidogena
Rapporto grasso/proteine	1,14	0,9
C18:1 trans-10	0,55	1,33
C18:1 trans-11/C18:1 trans-10	1,89	0,74

Considerazioni conclusive

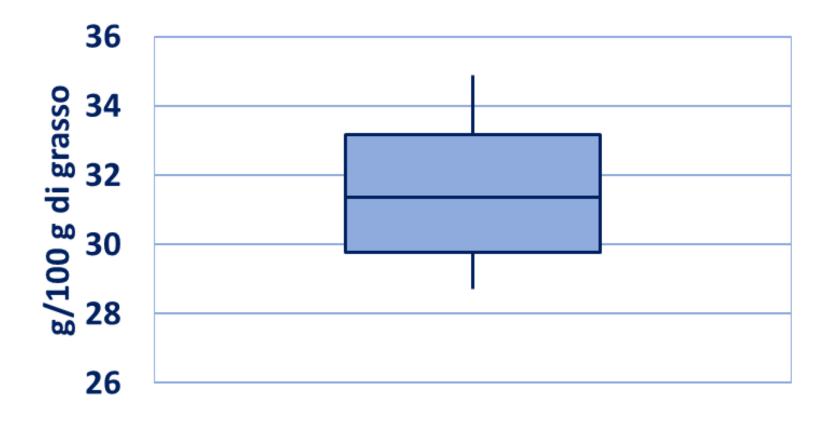


- **→** Profilo in acidi grassi
 - **➤** Variazione significativa nella popolazione
 - ➤ Valorizzazione di filiere produttive con migliori qualità nutritive
 - > Strumento per migliorare la gestione della mandria e di conseguenza la produzione
 - ➤ MIR consente di registrare e fornire un numero di dati elevato a costi contenuti

Sistemi di allevamento e profilo degli acidi grassi



Sistemi di allevamento e profilo degli acidi grassi


Fonte: Borreani et al., 2016

Latte di massa piemontese

Utilizzo degli acidi grassi in stalla

- > Mobilizzazione dal tessuto adiposo di acidi grassi a lunga catena
- >Aumento dell'acido oleico (C18:1 cis-9)
- > Basse concentrazioni di acidi grassi saturi
- **►** Indicatori di un bilancio energetico negativo
- ➤ Indicatore di chetosi subclinica (Gross et al., 2011)

Les Oméga 6

Les Oméga 6 participent à l'élaboration des médiateurs callulaires. Ils viennent également ajouter leur pierre sur les chantiers de développement du système nerveux, de l'équilibre cardiovasculaire, de l'immunéé, de la guérison des blassures et des réactions allergiques et inflammatoires. Hais consommés en excès, ils peuvent empécher les Oméga 3 de tenir leur rôle, notamment lors de la protection cardiovasculaire et provoquer des douleurs et des maladies inflammatoires comme l'asthme ou l'arthrite.

Acidi Grassi nel latte: l'esempio olandese

Aumento del 30% di Acidi Grassi Insaturi rispetto "al valore medio stabilito"

Impegno delle Aziende a raggiungere e mantenere l'obiettivo

Aumento del valore economico del latte con una compensazione stagionale dei costi aggiuntivi

	Varia	zione g/100 g UFA	Premio (x 100 kg)
		3,50	€ 3,40
		2,50	€ 3,00
	+	1,50	€ 2,60
		0,50	€ 2,20
		0,25	€ 2,10
		Riferimento	€ 2,00
		0,25	€ 1,75
		0,50	€ 1,50
		1,50	€ 0,50
		1,75	€ 0,25
		2,00	€ 0,00

Fonte: Qlip (Olanda)

Considerazioni conclusive

- **→** Profilo in acidi grassi
 - **➤** Variazione significativa nella popolazione
 - ➤ MIR consente di registrare e fornire un numero di dati elevato a costi contenuti
 - > Valorizzazione di filiere produttive con migliori qualità nutritive
 - ➤ Prospettive di valorizzazione di latti con alto contenuto di omega-3 non additivati (Delia Arena, Tetrapak 2016)
 - >Strumento per migliorare la gestione della mandria e di conseguenza la produzione

Grazie dell'attenzione

