

Associazione Regionale Allevatori della Lombardia Via Kennedy, 30 – Crema CR

www.aral.lom.it info@aral.lom.it Tel. 0373-897011

GESTIONE VIRTUOSA E COMPRENSORIALE DEI REFLUI L'ESPERIENZA CONCRETA DEL PROGETTO LIFE DOP

Padenghe sul Garda – 25 gen 2019

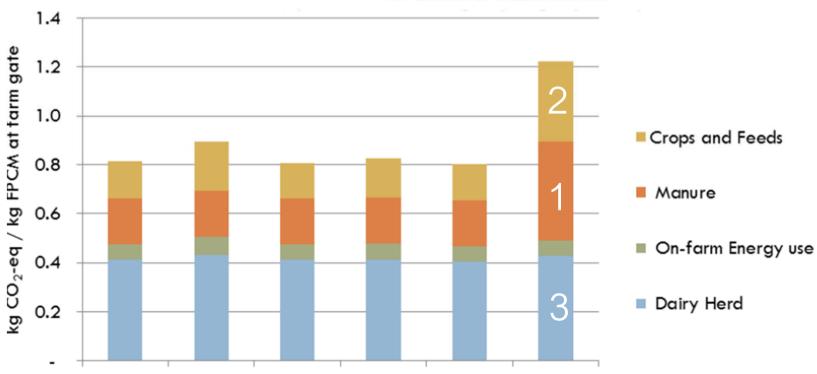
Stefano Garimberti

LIFE DOP

Demonstrative mOdel of circular economy Process in high quality dairy industry

Costruire un modello di produzione ambientalmente sostenibile per Parmigiano Reggiano e Grana Padano, dimostrabile e valorizzabile sul mercato.

Progetto LIFE DOP: I PROTAGONISTI



Cosa pesa nella produzione

Greenhouse gas (GHG) emissions due to each phase of milk production in distinct scenarios.

MIGLIORAMENTO ATTIVO NEI PUNTI CRITICI DELLA FILIERA – ECONOMIA CIRCOLARE

- GESTIONE DEI REFLUI
- FERTILIZZAZIONE E GESTIONE DEI NUTRIENTI IN CAMPO
- GESTIONE ALLEVAMENTI

Gestione comprensoriale dei reflui – GLI STRUMENTI

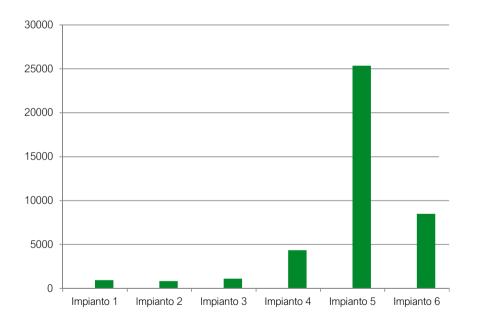
- Struttura che coordina la gestione (Cooperativa di allevatori)
- Tecnologie innovative per il trattamento e il trasporto dei reflui (separatore solido liquido – cavitatore idrodinamico dei reflui)
- Incontro tra offerta e domanda e piattaforma di tracciabilità degli scambi (Borsa Liquami)

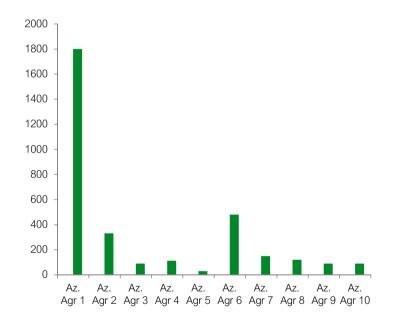
Gestione comprensoriale - Scambi anno 2018 – I NUMERI

58	allevamenti di bovini da latte che cedono effluenti di allevamento
6	impianti di biogas che acquistano frazioni solide/palabili

aziende agricole di filiere diverse che acquistano fertilizzanti ammendanti

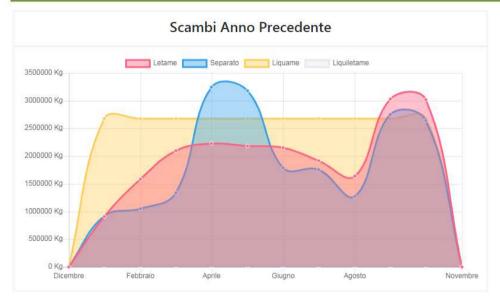
25.300	ton di letame a impianti biogas
15.700	ton di solido separato di liquami bovini a impianti di biogas
3.300	ton di solido separato ad aziende agricole di filiere diverse

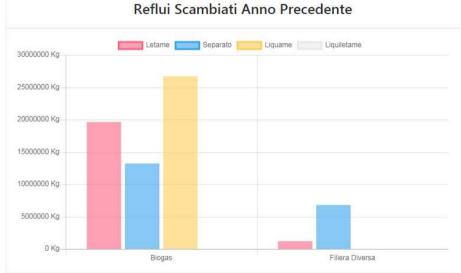

44.000 ton/anno di reflui (160.000 kg di azoto) che escono dal sistema



Distribuzione degli scambi

Reflui al biogas




Reflui ad az. agr. di altre filiere

Borsa Liquami – Tracciabilità degli scambi e benefici ambientali

10.149.904 Kwh

CO2 Equivalenti Risparmiati
7.104,93

con il contributo dell'Unione Europea life 15 ENV/T/000585

Sistema di riferimento: baseline

Cows

Milk

Slurry

40 allevamenti 5550 vacche SAU 2113 ha 6 Caseifici

54.300 tons/anno di latte prodotto

Sistema di riferimento: audit and baseline

Nutrients	N	Р	
	ton N/year	ton P/year	
Input da alimenti	783	144	All and a series
Input da fertilizzanti di sintesi	63	6	
Deposizione naturale	63	0	
Fissazione biologica	163	0	Totale CO ₂ eq emessi da produzione di latte
TOTALE NUTRIENTI INPUT	1073	151	76092 ton/anno
			Emissione specifica
Export (latte)	251	48	1.4 kg CO ₂ eq/kg latte
Export (carne)	37	9	2
NUTRIENT EXPORT	311	65	
Carico di nutrienti residui nel			
sistema	762	82	OSTRO SITO, WWW LIFFDOR FIL

Sistema di riferimento: audit and baseline

- Il sistema presenta un alto input di nutrienti da importazione di alimenti (73% di N e più del 96% di P)
- L' export attraverso i prodotti è molto basso se comparato con l'import
- Il sistema foraggero locale presenta una elevata sostenibilità (basso import di azoto minerale e alta fissazione biologica)

Miglioramento nella gestione dei reflui

Il digestato viene impiegato come fertilizzante rinnovabile in sostituzione dei fertilizzanti di sintesi

Gli effluenti di allevamento sono processati in digestione anaerobica e producono en. rinnovabile

Risultati derivanti dal miglioramento della gestione dei reflui

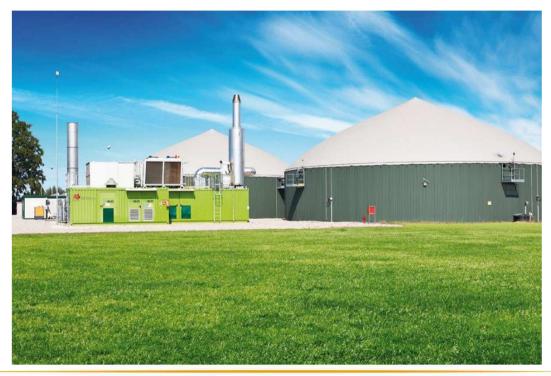
Nutrienti	N	Р	
	ton		
	N/year	ton P/year	
Input da aliemnti	783	144	M all le
Input da fertilizzanti di sintesi	63	6	
Deposizione naturale	63	0	
Fissazione biologica	163	0	
TOTALE NUTRIENTI INPUT	1073	151	Totale CO ₂ eq emessa da
Export (latte)	251	48	produzione di latte 72055 ton/anno
Export (carne)	37	9	Emissione specifica
Export (digestato)	144	40	1.3 kg CO ₂ eq/kg latte
Ammonio solfato	62	0	kg CO ₂ eq7 kg tatte
TOTALE NUTRIENTI EXPORT	494	95	
Carico di nutrienti residui nel sistema	579	62	

Risultati derivanti dal miglioramento della gestione dei reflui

5.3 milio Kwh/year renewable energy

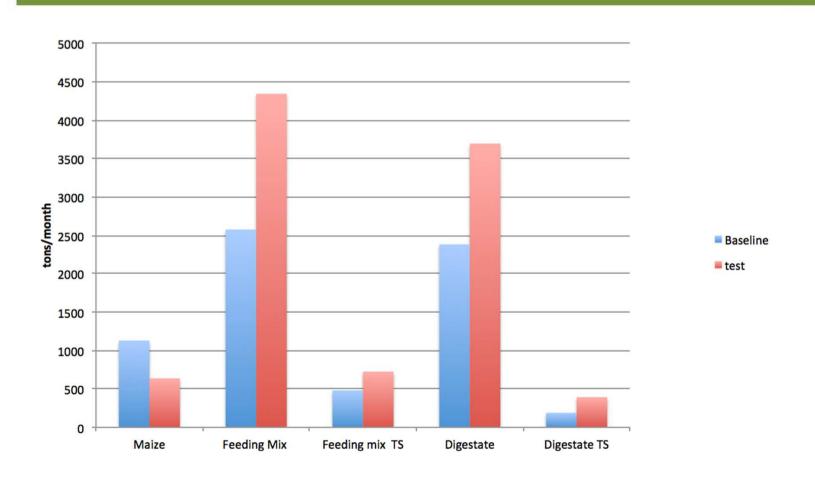
245 Tons/year recovered fertilizers (N and P)

-5.2% CO₂



con il contributo dell'Unione Europea life 15 ENV/T/000585

Liquame e frazioni separate solide in sostituzione del mais in due impianti di biogas


Liquame e frazioni separate solide in sostituzione del mais in due impianti di biogas - NUMERI

Parametro	Biogas plant 1	Biogas plant 2
Sostituzione del mais	15%	Up to 60%
Stabilità di processo	yes	yes
Incremento di volume di digestato	negligible	40%

Bilancio di massa di un anno: baseline vs test

Miglioramento nella gestione agronomica del digestato

Iniezione e microirrigazione di digestato

Forte riduzione nell'impiego di fertilizzanti di sintesi

Tecniche di minima lavorazione e qualità dei suoli

UN PROTOTIPO PER TRATTARE IL LIQUAME E IL LETAME OBIETTIVO FUNZIONALE

Trattare il liquame e il letame e ottenere un materiale più gestibile per gli impianti di biogas

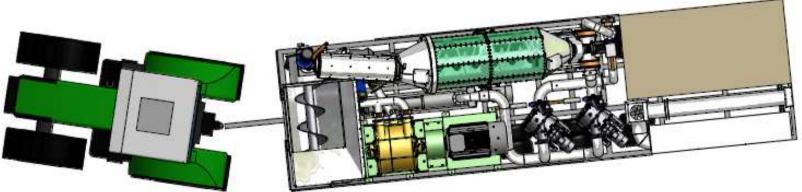
- Elevata omogeneità
- Elevato contenuto in sostanza secca (16%)
- Elevata pompabilità
- Assenza di materiali inerti

PROTOTIPO: REQUISITI PRESTAZIONALI MINIMI

OBIETTIVI

CAPACITA' DI LAVORO MINIMA: 25 M³/ORA

SVILUPPO DEL PROTOTIPO SU UN UNICO PIANALE


MISCELARE IL LIQUAME AL LETAME LETAME PER RAGGIUNGERE UNA CONCENTRAZIONE IN SOSTANZA SECCA TRA IL 13 E IL 16%

QUESTO IL RISULTATO

Settaggio del prototipo in allevamento

Primi risultati del settaggio cavitatore

Referto analitico nº: BMP 3592

Nome campione: INGRESSO CAVITATORE PROVA 1

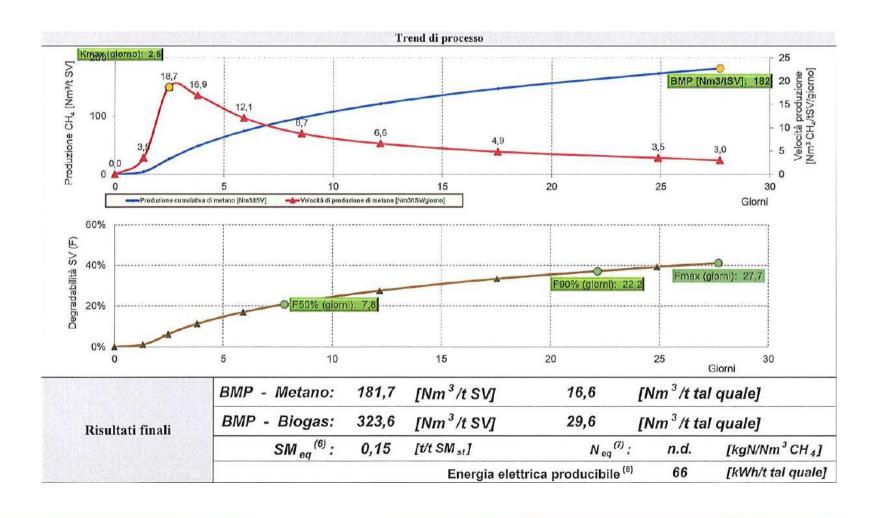
Data del campionamento: 06/12/2018 Data di arrivo campione: 06/12/2018

Descrizione campione: Altro - Mix carico

Note: -

Codice archivio: DOC-2019-0124 - Pos. 4.6.5.94

Inizio test: 11/12/2018 Fine test: 08/01/2019


Prelevamento a cura di: Verzellesi F. Addetto al laboratorio: Soldano M.

Codice campione: 2018-3203, Digestore C3

Analisi inoculo			Analisi substrato		
Solidi totali (ST)	34,63	[g/kg]	Solidi totali (ST)	118,6	[g/kg]
Solidi volatili (SV)	24,20	[g/kg]	Solidi volatili (SV)	90,9	[g/kg]
Tipo di inoculo	Digestato		Solidi volatili (SV/ST)	76,6%	[%ST]
SV_Inoculo/SV_Substrato (2)	2,0		Contenuto azoto totale	nd	[kg/t]
Parametri di processo			Indici di cinetica di processo e produttivi		
Temperatura di processo	38	[°C]	Intervallo di tempo per K_{max} (3)	2,5	[giorni]
Contenuto di CH $_{4}$ nel biogas	56,3	[%]	Degradabilità anaerobica massima (F_{max}) $^{(4)}$	41,6%	[%SV]
Contenuto di H $_2S$ nel biogas	953	[ppm]	Intervallo di tempo per F 50% (5)	7,7	[giorni]
Durata test	28	[giorni]	Intervallo di tempo per F 90% (5)	21,9	[giorni]
Stima digestato producibile	0,96	[t/t substrato]	Produzione marginale ultimo giorno del test	1,56%	

Primi risultati del settaggio – BMP CAVITATO

Settaggio del cavitato in sede fissa

Inserimento in impianto alla scala reale e utilizzo del digestato in cerealicoltura

con il contributo dell'Unione Europea life 15 ENV/T/000585

Benefici

Miglioramento della qualità dell'aria: riduzione delle emissioni di ammoniaca in atmosfera

Riduzione del consumo di energia fossile per la produzione di fertilizzanti di sintesi

Migliore qualità dei suoli e biodiversità

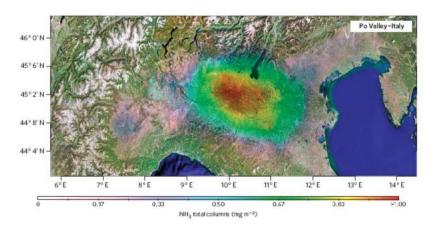


Figure 2 - Annual averaged NH₃ columns over three agricultural valleys (Clarisse et al., 2009).

Calcolo dell'impatto ambientale nella situazione corrente attraverso metodologia LCA

Misurazione dell'impatto del modello virtuoso con dimostrazione al campo

Definizione dei vincoli e delle buone pratiche da seguire

Implementazione e certificazione (EPD ecc..)

Grazie per l'attenzione

VISITA IL NOSTRO SITO: WWW.LIFEDOP.EU

Per contatti

info@lifedop.eu